第四百八十七章:吃饱没事干

第四百八十七章:吃饱没事干

“哈?这我就不懂了……”听上去雨霏这回应该更多的是没搞懂依泉的意思。

“其实呀!由于我们是独立投掷的,我可以假设我第一个投,我击中了M。现你轮到你投了,假如实数的个数能和有理数的个数一一对应,那么任意实数小数点后面的位数都是可数的,所以如果你击中的是Y,那么Y小于M的概率是100%,即你赢的概率是100%。但,我们的条件是完全对称的,所以相似讨论,我赢的概率也应该是100%。但怎么可能既是你赢又是我赢呢?结论就变成我们都不到找到这样的意义对应的序列,所以实数的个数能和有理数的个数一一对应是假命题。而实际上谁后判断就是谁赢,因为不管你投了多大的数,在数轴上都有大于你无数倍的数,后判断的胜率永远都是100%。但问题来了,客观的结果怎么能被观察的效果所改变呢?这就很反常识了。”

“哇,那这是不是很像现实中的观察者效应?也许粒子的运动本来就是随机的,但被看到之后它便不能显得‘随机’了吧?”

“啊这你也不能胡乱联想就是了……这其实就说明实数集合远大于有理数的集合,因为前者是不可数的无限,可数的无限在它面前就跟0一样。在数学上,可数的0加起来即使再多也是0,但是面积为0的点经过不可数无限的堆叠,却能组成任意面积非0的面,这简直就是一个反常识的矛盾,但它在数学中又确实是存在的,毕竟我们身处在这样一个有限的物理世界去讨论无限的理论数学世界本来就很奇怪,但颍颢她偏偏就认为真实的世界也应该能包含所有可见又可正视的理论数学,于是我们的世界在她看来光是一个不可无限细分便足以让她坚信是虚拟的了。”

“不过我还是觉得吧,真实世界就一定要符合常识吗?这个常识又是谁总结的?那以前还有人觉得地球是宇宙中心是常识呢!都可以变的嘛!”

“所以我才说颖颢会那样想就是有问题的呀!只是她偏偏又觉得自己才是对的,并且靠着自己的能力和想法去付诸实践。但这些东西听听就好,从一个无限跃进到更高级的无限,现实物理世界中毕竟没有真实的经历,而且这东西真的可以受到意志而改变?我们的存在就只是在高层世界的意志控制下发生的现象?于是当用棋盘模拟现实的时候,也需要加入棋手的意志来代替运行的规律?这太扯了吧,所以还是不能太细究……”

其实关于依泉说的“从一个无限跃进到更高级的无限”让一般人理解起来确实很抽象,而尹浩也只是牢牢记住了那些关于“替换法”、“测度”等等概念的操作。其实本来他对大数和无限基数都并不感兴趣的,对栩棋设定下《乌合之众象棋》极尽复杂与夸张之能事的规则也充满着疑惑甚至是“吃饱没事干”的鄙夷。但现在仿佛是见到颖颢之后便被她“心有灵犀一点通”一般开始疯狂地去遐想那个无尽的新世界,想要去理解她内心的世界,这种感觉也有些“双重标准”但回想起来简直不可思议。

对于依泉和雨霏的不信任,他很想现在爬起来告诉她们无限是如何一步一步堆积起来的,为什么低级无限相对于高级无限就好像是0,以及自己发现新世界的喜悦之情,可现实是她们刚看了两段大数的内容便难以接受,于是也只能无奈地自己又在脑海里过一遍——

“(……乌合之众象棋的棋盘是一个由ω条横线、ω条竖线、ω条纵线相交的立方阵,那么主战场内的某个棋子坐标可为(9,4,1)。但后面不再局限于立方阵,而是引入了无限维度理论,并依靠坐标系来运作,等于说坐标数量也有ω个,比如说主战场内的某个棋子被计为(9,4,1,1,1,1,1,1……)。而现在我们又引入了基数的概念,这可以帮助我们的向量数到ω之后。基数是集合论中刻画任意集合大小的一个概念,两个能够建立元素间一一对应的集合称为互相对等集合。所以在之前讨论自然数的部分我们只能保证图中打钩部分的存在,但引入集合之后,我们把自然数加到ω之后一一对应,从而最终得到了ω·2!以此类推,我们通过不断地叠加集合,最终得到了ω^2……)”

“(……然后我们再通过替代法,把自然数中的1、2、3、4……等,替代到上述中得到的ω^2之中的幂次数,而得到ω^3、ω^4……等,最终又得到ω^ω。而ω^ω则是一个一层指数塔,要是我们再把自然数中的1、2、3、4……等通过替代法换成那些指数塔的层数,而得到ω^(ω^ω)、ω^(ω^(ω^ω))……等,最终得到ω^(ω^(ω^(ω^(ω^(ω^(ω……)))))),循环ω次。只有又是以此类推,我们已经做过了3次替代法,要是我们再把自然数中的1、2、3、4……等通过替代法换成做替代法的次数呢?如果从中又发生了自我指涉,那就变成了二阶逻辑,我们再把自然数中的1、2、3、4……等通过替代法换成逻辑的阶数,之后我们还有ω种方法来构成了一个乃至ω个疯狂增长的回路,从而得到了越来越大的基数……)”

“(……最终,就像我们之前在已知自然数里除了直接设定无法得到ω一样,我们也可以直接设定一个ω1大于所有ω组合的形式。从而再依靠之前的替代法,又得出ω2、ω3、ω4……一直到ω下标ω。再次替换,又得出ω下标ω·2,ω下标ω·3,ω下标ω·4……一直到ω下标ω^2。还是跟之前一样,又一次替换得到了ω下标ω下标ω下标ω下标ω下标ω……,循环ω次。之后我们又有ω种方法来构成了一个乃至ω个疯狂增长的回路,无论我们替代多少次,无论我们用了多少阶逻辑,无论我们又设定了多少个新的基数,除了再引入“不可达基数”外也得不出什么新的东西了,但我在这里暂时并不打算引入那些纯数学概念上的超大基数,而是希望还能看见运用自然数的影子……)”

“(其实就是不断定义一个全新的无穷大来一直进行超穷跳跃运算的飞跃。即使用不可达基数计算器,然后对其不动点的迭代,无论如何,也到不了的基数。毕竟不可达基数计数器的有效性依赖于对“存在不可达基数”使用替换,但这是抵达不了不可达不动点的,而在加入“存在不可达不动点”的情况下,仅使用不可达基数计数器,那么如何迭代都到不了下一个不可达不动点。我们可以假设他存在,也可以觉得这种存在超越了我们的经验和理智把握而拒绝他存在,但要讨论下去只能靠设定直接承认了啊!)”

“(……了解了上述概念之后,我们现在就可以讲一下,全新的坐标系,类似于(……0,0,0,0,0——9,4,1,1,1,1,1,1……)所表达的含义。在‘——’之后还是跟之前一样,分别表示X轴,Y轴,Z轴,第四维度,第五维度……第ω维度。而通过上述介绍,我们知道‘——’之后的数字不再仅局限于自然数,还可以加入基数来表示,不仅有些坐标可以达到(……0,0,0,0,0——ω+2,ω·2,ω^2,ω^ω,ω↑↑↑↑↑↑……↑↑↑↑↑↑ω,ω2,ω下标ω,ω下标ω^2……)。甚至于维度数量也可以达到第ω+2维度,第ω·2维度,第ω^2维度,第ω^ω维度,第ω^(ω^(ω^(ω^(ω^(ω^(ω……))))))维度,第ω↑↑↑↑↑↑……↑↑↑↑↑↑ω维度,第ω2维度,第ω下标ω维度,第ω下标ω^2维度,第ω下标ω下标ω下标ω下标ω下标ω……维度,等等等等……)”

“(……在‘——’之前的数字则用来表示“——”之后的按照排序的对应向量,进行了多少次的替换法,‘——’每向前间隔一个逗号的数值对应‘——’每向后间隔一个逗号的数值:比如(……0,0,0,0,0——9,4,1,1,1,1,1,1……)里,‘——’之前第一个数值为0,则表示‘——’之后的第一个数值,也就是X轴的数值没有进行过替换。而如果是(……0,0,0,0,0——ω+9,4,1,1,1,1,1,1……)里,X轴的数值可以带ω进行表示,所以‘——’之前第一个数值依然为0,不需要进行替换。以此类推,到(……0,0,0,0,0——ω下标ω^2+ω下标ω+ω2+ω↑↑↑↑↑↑……↑↑↑↑↑↑ω+ω^ω+ω^2+ω·2+ω+9,4,1,1,1,1,1,1……)也是同理……)”

第四百八十七章:吃饱没事干
颢梦狂想曲
免费计数器